4.7 Article

Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling

Journal

IEEE TRANSACTIONS ON SIGNAL PROCESSING
Volume 50, Issue 2, Pages 224-230

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/78.978378

Keywords

-

Ask authors/readers for more resources

We address the problem of parameter estimation of superimposed chirp signals in noise. The approach used here is a computationally modest implementation of a maximum likelihood (ML) technique. The ML technique for estimating the complex amplitudes, chirping rates, and frequencies reduces to a separable optimization problem where the chirping rates and frequencies are determined by maximizing a compressed likelihood function that is a function of only the chirping rates and frequencies. Since the compressed likelihood function is multidimensional, its maximization via a grid search is impractical. We propose a noniterative maximization of the compressed likelihood function using importance sampling. Simulation results are presented for a scenario involving closely spaced parameters for the individual signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available