4.4 Article

A genetic algorithm for the identification of conformationally invariant regions in protein molecules

Journal

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444901019291

Keywords

-

Ask authors/readers for more resources

Understanding macromolecular function often relies on the comparison of different structural models of a molecule. In such a comparative analysis, the identification of the part of the molecule that is conformationally invariant with respect to a set of conformers is a critical step, as the corresponding subset of atoms constitutes the reference for subsequent analysis for example by least-squares superposition. A method is presented that categorizes atoms in a molecule as either conformationally invariant or flexible by automatic analysis of an ensemble of conformers (e.g. crystal structures from different crystal forms or molecules related by non-crystallographic symmetry). Different levels of coordinate precision, both for different models and for individual atoms, are taken explicitly into account via a modified form of Cruickshank's DPI [Cruickshank (1999), Acta Cryst. D55, 583-601] and are propagated into error-scaled difference distance matrices [Schneider (2000), Acta Cryst. D56, 715-721]. All pairwise error-scaled difference distance matrices are then analysed simultaneously using a genetic algorithm. The algorithm has been tested on several well known examples and has been found to converge rapidly to reasonable results using a standard set of parameters. In addition to the description of the algorithm, a criterion is suggested for testing the identity of two three-dimensional models within experimental error without any explicit superposition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available