4.2 Article

Magnetoconductance of a two-dimensional metal in the presence of spin-orbit coupling

Journal

EUROPEAN PHYSICAL JOURNAL B
Volume 25, Issue 4, Pages 483-495

Publisher

SPRINGER-VERLAG
DOI: 10.1140/epjb/e20020054

Keywords

-

Ask authors/readers for more resources

We show that in the metallic phase of a two dimensional electron gas the spin-orbit coupling due to structure inversion asymmetry leads to a characteristic anisotropy in the magnetoconductance. Within the assumption that the metallic phase can be described by a Fermi liquid, we compute the conductivity in the presence of an in-plane magnetic field. Both the spin-orbit coupling and the Zeeman coupling with the magnetic field give rise to two spin subbands, in terms of which most of the transport properties can be discussed. The strongest conductivity anisotropy occurs for Zeeman energies of the order of the Fermi energy corresponding to the depopulation of the upper spin subband. The energy scale associated with the spin-orbit coupling controls the strength of the effect. More in particular, we find that the detailed behavior and the sign of the anisotropy depends on the underlying scattering mechanism. Assuming small angle scattering to be the dominant scattering mechanism our results agree with recent measurement on Si-MOSFET's in the vicinity of the metal-insulator transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available