4.8 Article

Sorption-desorption of lonogenic compounds at the mineral-water interface: Study of metal oxide-rich soils and pure-phase minerals

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 36, Issue 3, Pages 501-511

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es0109390

Keywords

-

Ask authors/readers for more resources

Sorption of the ionic compounds 2,4-D and quinmerac onto iron oxide-rich, variable charged soils was strongly influenced by mineralogy, particularly soil iron and aluminum oxides, whereas sorption of the neutral norflurazon was only related to total soil C. An appreciable fraction of the mass sorbed in stirred-flow studies was easily desorbed by deionized water, and desorption of ionic compounds was initially more rapid than sorption. This sorption-desorption behavior, although contrary to desorption hysteresis commonly observed in batch studies, suggests that the reversibly sorbed fraction is weakly bound to the soil surface. 2,4-D sorption to iron oxide-rich soils and pure-phase metal oxides appears to be driven by nonspecific electrostatic attraction, with specific electrostatic attraction and van der Waals interactions being secondary. Both the carboxylate and the heterocyclic N groups may participate in sorption of quinmerac, facilitated by specific and nonspecific electrostatic attraction and surface complexation. The heterocyclic N, amine, and carbonyl groups of norflurazon do not appear to interact with soil minerals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available