4.6 Article

Development of larval and transformed teeth in Ambystoma mexicanum (Urodela, Amphibia):: an ultrastructural study

Journal

TISSUE & CELL
Volume 34, Issue 1, Pages 14-27

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1054/tice.2002.0219

Keywords

tooth development; Ambystoma mexicanum; pedicellate and non-pedicellate teeth; enameloid

Ask authors/readers for more resources

Odontogenesis of early larval non-pedicellate teeth, late larval teeth with a more or less distinct dividing zone and fully transformed pedicellate teeth in Ambystoma mexicanum (Urodela) was studied to obtain insights into the development of differently structured teeth in lower vertebrates. Using transmission electron microscopy we investigated five developmental stages: (1) papilla; (2) bell stage (secretion of the matrix begins); (3) primordium (mineralization and activity of ameloblasts starts); (4) replacement tooth (young, old); and (5) established, functional tooth. Development of the differently structured teeth is largely identical in the first three stages. Mineralization takes place in apico-basal direction up to the (prospective) pedicel (early and some late larvae) or up to the zone that divides the late larval and transformed tooth in pedicel and dentine shaft (pedicellate condition). Mineralization starts directly at the collagen and by means of matrix vesicles. First odontoblasts develop small processes that extend to the basal lamina of the inner epithelial layer of the enamel organ. The processes are small and lack organelles in early larval teeth, but become larger, arborescent, and contain some organelles in late larval and transformed teeth. The processes are surrounded by unmineralized matrix (predentine). Odontoblasts at the basis of the teeth, at the pedicel, and in the zone of division do not develop significant cytoplasmic processes that extend into the matrix. Cells of the inner enamel epithelium differentiate to ameloblasts that secrete the enamel. In the early larval tooth they show an extensive basal labyrinth that becomes regressive when the enamel layer is completed. In late larval and transformed teeth, however, a large cavity arises between the basal ruffled border of ameloblasts and their basal lamina. This cavity appears to mediate amelogenesis. A small apical zone in early, but not in late larval teeth directly below the thin enamel layer consists of enameloid and is free of dentine channels. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available