4.3 Article Proceedings Paper

Abiotic stress and plant responses from the whole vine to the genes

Journal

AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH
Volume 16, Issue -, Pages 86-93

Publisher

WILEY
DOI: 10.1111/j.1755-0238.2009.00058.x

Keywords

abscisic acid; salinity; water deficit

Ask authors/readers for more resources

Drought, salinity and extreme temperatures significantly limit the distribution of grapes around the world. In this review, the literature of grape responses to abiotic stress with particular reference to whole plant and molecular responses observed in recent studies is discussed. A number of short-term and long-term studies on grapevine shoots and berries have been conducted using a systems biology approach. Transcripts, proteins and metabolites were profiled. Water deficit, salinity and chilling altered the steady-state abundance of a large number of transcripts. Common responses to these stresses included changes in hormone metabolism, particularly abscisic acid (ABA), photosynthesis, growth, transcription, protein synthesis, signalling and cellular defences. Some of the transcriptional changes induced by stress were confirmed by proteomic and metabolomic analyses. More than 2000 genes were identified whose transcript abundance was altered by both water deficit and ABA. Different gene sets were used to map molecular pathways regulated by ABA, water deficit, salinity and chilling in grapevine. This work supports the hypothesis that ABA is a central regulator of abiotic stress tolerance mechanisms. ABA affects signalling pathways that trigger important molecular activities involving metabolism, transcription, protein synthesis, and cellular defence and also regulates important physiological responses such as stomatal conductance, photoprotection and growth. Systems biology approaches are providing more comprehensive understanding of the complex plant responses to abiotic stress. The molecular sets generated from mapping the ABA-inducible stress responses provide numerous targets for genetic and cultural manipulation for improved plant protection and grape quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available