4.5 Article

Double-stranded RNA decreases IGF-I gene expression in a protein kinase R-dependent, but type I interferon-independent, mechanism in C6 rat glioma cells

Journal

ENDOCRINOLOGY
Volume 143, Issue 2, Pages 525-534

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.143.2.525

Keywords

-

Funding

  1. NIDDK NIH HHS [DK-47357] Funding Source: Medline

Ask authors/readers for more resources

We previously demonstrated that Poly (IC) decreased the growth of C6 cultures in association with reduced IGF-I synthesis and secretion. In this study we characterized the mechanism(s) by which Poly (IC) decreased IGF-I mRNA in C6 cells. Both Poly (IC) and type I interferon (IFN) decreased IGF-I mRNA. Cycloheximide and a blocking antibody against IFN did not alter the Poly (IC)-mediated inhibition of IGF-I mRNA, but prevented IFN from reducing IGF-I mRNA. Poly (IC) did not alter the stability of IGF-I mRNA. Poly (IC) decreased the abundance of IGF-I pre-mRNA in C6 nuclei, but did not inhibit proximal IGF-I exon 1 promoter/luciferase fusion constructs in transient transfection assays. Poly (IC) activated double-stranded RNA-activated protein kinase (PKR) at 5 min and increased PKR protein levels at 48 and 72 h. Exogenous IGF-I did not prevent Poly (IC) from activating PKR, but inhibited the Poly (IC)-mediated increase in PKR protein levels. The PKR inhibitor 2-aminopurine prevented the Poly (IC) stimulation of eIF2-alpha phosphorylation and the Poly (IC)-mediated decrease in IGF-I mRNA. We conclude that Poly (IC) decreases IGF-I gene transcription in a mechanism that requires the activation of preexisting PER, but not the induction of IFN or PKR proteins in C6 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available