4.8 Article

Photoactivation of the flavin cofactor in Xenopus laevis (6-4) photolyase:: Observation of a transient tyrosyl radical by time-resolved electron paramagnetic resonance

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.032469399

Keywords

-

Ask authors/readers for more resources

The light-induced electron transfer reaction of flavin cofactor photoactivation in Xenopus laevis (6-4) photolyase has been studied by continuous-wave and time-resolved electron paramagnetic resonance spectroscopy. When the photoactivation is initiated from the fully oxidized form of the flavin, a neutral flavin radical is observed as a long-lived paramagnetic intermediate of two consecutive single-electron reductions under participation of redox-active amino acid residues. By time-resolved electron paramagnetic resonance, a spin-polarized transient radical-pair signal was detected that shows remarkable differences to the signals observed in the related cyclobutane pyrimidine dimer photolyase enzyme. In (6-4) photolyase, a neutral tyrosine radical has been identified as the final electron donor, on the basis of the characteristic line width, hyperfine splitting pattern, and resonance magnetic field position of the tyrosine resonances of the transient radical pair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available