4.8 Article

Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.032681099

Keywords

-

Funding

  1. NIMH NIH HHS [K01 MH064036] Funding Source: Medline
  2. NINDS NIH HHS [NS39837, R01 NS039837] Funding Source: Medline

Ask authors/readers for more resources

Changes in the morphology of dendritic spines are correlated with synaptic plasticity and may relate mechanistically to its expression and stabilization. Recent work has shown that spine length can be altered by manipulations that affect intracellular calcium, and spine length is abnormal in genetic conditions affecting protein synthesis in neurons. We have investigated how ligands of group 1 metabotropic glutamate receptors (mGluRs) affect spine shape; stimulation of these receptors leads both to calcium release from intracellular stores and to dendritic protein synthesis, Thirty-minute incubation of cultured hippocampal slices and dissociated neurons with the selective group 1 mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induced a significant increase in the average length of dendritic spines. This elongation resulted mainly from the growth of existing spines and was also seen even in the presence of antagonists of ionotropic receptors, indicating that activation of these receptors by mGluR-induced glutamate release was not required. Prolonged antagonism of group 1 mGluRs with (S)-alpha-methyl-4-carboxyphenylglycine (MCPG) did not result in shorter average spine length. Elongation of dendritic spines induced by DHPG was blocked by calcium chelation and by preincubation with the protein synthesis inhibitor puromycin. The results suggest that in vivo activation of group 1 mGluRs by synaptically released glutamate affects spine shape in a protein synthesis-dependent manner.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available