4.8 Article

Spatial frequency and orientation tuning dynamics in area V1

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.022638499

Keywords

reverse correlation; striate cortex

Funding

  1. NEI NIH HHS [EY006680, R01 EY012241, F32 EY006680] Funding Source: Medline

Ask authors/readers for more resources

Spatial frequency (SF) and orientation tuning are intrinsic properties of neurons in primary visual cortex (area V1). To investigate the neural mechanisms mediating selectivity in the awake animal, we measured the temporal dynamics of SF and orientation tuning. We adapted a high-speed reverse-correlation method previously used to characterize orientation tuning dynamics in anesthetized animals to estimate efficiently the complete spatiotemporal receptive fields in area V1 of behaving macaques. We found that SF and orientation tuning are largely separable over time in single neurons. However, spatiotemporal receptive fields also contain a small nonseparable component that reflects a significant difference in response latency for low and high SF stimuli. The observed relationship between stimulus SF and latency represents a dynamic shift in SF tuning, and suggests that single V1 neurons might receive convergent input from the magno- and parvocellular processing streams. Although previous studies with anesthetized animals suggested that orientation tuning could change dramatically over time, we find no substantial evidence of dynamic changes in orientation tuning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available