4.6 Article

Validated zinc finger protein designs for all 16 GNN DNA triplet targets

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 6, Pages 3850-3856

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110669200

Keywords

-

Ask authors/readers for more resources

The Cys(2)-His(2)-type zinc finger DNA-binding proteins can be engineered to bind specifically to many different DNA sequences. A single zinc finger typically binds to a 3-4-base pair DNA subsite. One strategy for design is to identify highly specific fingers that recognize each of the 64 possible DNA triplets. We started with a subgroup of the 64 triplets, the GNN-binding fingers. The GNN-binding fingers have been examined in several studies, but previous studies did not produce specific fingers for all of the 16 GNN triplets. These previous studies did not provide any information on the possible positional or context effects on the performance of these fingers. To identify the most specific design and take the possible positional effects into consideration, we did a large-scale site selection experiment on our GNN designs. From this study, we identified very specific fingers for 14 of the 16 GNN triplets, demonstrating for the first time a clear positional dependence for many of the designs. Further systematic specificity study reveals that the in vivo functionality of these zinc finger proteins in a reporter assay depends on their binding affinities to their target sequences, thus giving a better understanding of how these zinc finger proteins might function inside cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available