4.6 Article

Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 6, Pages 4565-4572

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M110583200

Keywords

-

Ask authors/readers for more resources

Fibrillin-containing microfibrils are polymeric structures that are difficult to extract from connective tissues. Proteolytic digestion of tissues has been utilized to release microfibrils for study. Few of the molecules that connect microfibrils to other elements in the matrix have been identified. In this study, electron microscopic immunolocalization of anti-versican antibodies in tissues and in extracted microfibrils demonstrated that the C-terminal region of versican is found associated with fibrillin microfibrils. Extraction of microfibrils followed by treatment of microfibrils under dissociating conditions suggested that the versican C terminus is covalently bound to microfibrils. Binding assays using recombinant fibrillin-1 polypeptides and recombinant lectican lectin domains indicated that the versican lectin domain binds to specific fibrillin-1 polypeptides. The versican lectin domain also bound to molecules comigrating with authentic fibrillin-1 monomers in anassay using cell culture medium. In assays using microfibrils, the versican lectin domain demonstrated preferential binding compared with other lecticans. Binding was calcium-dependent. The binding site for versican in microfibrils is most likely within a region of fibrillin-1 between calcium-binding epidermal growth factor-like domains 11 and 21. Human mutations irk this region can result in severe forms of the Marfan syndrome (neonatal Marfan syndrome). The connection between versican and fibrillin microfibrils may be functionally significant, particularly in cardiovascular tissues.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available