4.6 Article

A nuclear antagonistic mechanism of inhibitory Smads in transforming growth factor-β signaling

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 6, Pages 4176-4182

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M105105200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK 57501, DK 53757] Funding Source: Medline

Ask authors/readers for more resources

Inhibitory Smads (I-Smads), including Smad6 and Smad7, were initially characterized as cytoplasmic antagonists in the transforming growth factor-beta signaling pathway. However, I-Smads are also localized in the nucleus. Previously, we have shown that Smad6 can function as a transcriptional co-repressor. In this study, we found both Smad6 and Smad7 interact with histone deacetylases (HDACs). Acetylation state of core histones plays a critical role in gene transcription regulation. An HDAC inhibitor, trichostatin A, released Smad6-mediated transcription repression. Moreover, class I HDACs (HDAC-1 and -3), not class II HDACs (HDAC-4,-5, and -6), were co-immunoprecipitated with Smad6. Endogenous HDAC-1 was also shown to interact with both Smad6 and Hoxc-8. Mapping of the interaction domain indicates Smad6 MH2 domain is mainly involved in recruiting HDAC-1. Most interestingly, Smad6 also binds to DNA through its MH1 domain, and the MH2 domain of Smad6 masks this binding activity, indicating that Smad6 MH1 and MR2 domains associate reciprocally and inhibit each other's function. Hoxc-8 induces Smad6 binding to DNA as a transcriptional complex. Our findings revealed that I-Smads act as antagonists in the nucleus by recruiting HDACs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available