4.2 Article

Age, sex and laterality effects on cerebral glucose metabolism in healthy adults

Journal

PSYCHIATRY RESEARCH-NEUROIMAGING
Volume 114, Issue 1, Pages 23-37

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/S0925-4927(01)00126-3

Keywords

positron emission tomography (PET); normal aging; sex differences; laterality; asymmetry

Ask authors/readers for more resources

Normal cerebral glucose metabolism (CMRglc) was assessed with positron emission tomography in 66 healthy adults (28 women, 38 men; mean age 39, range 20-69 years) to determine effects of age, sex and laterality on CMRglc using statistical parametric mapping. Significant age-related decreases in global metabolism (gCMRglc) were noted in the entire sample and in both sexes, as well as widespread and bilateral decreases in cortical absolute regional metabolism (rCMRglc) and more focal anterior paralimbic normalized rCMRglc. However, significant positive correlations of age with normalized rCMRglc were observed in cerebellum, thalamus and occipital areas. Although the declines in gCMRglc and rCMRglc with age did not significantly differ between sexes, men compared with women had significantly lower gCMRglc and widespread decreased cortical and subcortical absolute rCMRglc. In the entire sample, and similarly in both sexes, left greater than right asymmetry was observed in medial frontal gyrus, posterior thalamus, lingual gyrus, cuneus and superior cingulate. The opposite laterality appeared in mesio-anterior cerebellum, and lateral frontal and temporal regions. Few regions showed significant interactions of metabolic laterality with either age or sex. These findings contribute toward a convergence in the literature, and the regression models of CMRglc vs. age serve as a normative database to which patients may be compared. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available