4.6 Article

In vitro evidence for a long range pseudoknot in the 5′-untranslated and matrix coding regions of HIV-1 genomic RNA

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 8, Pages 5995-6004

Publisher

ELSEVIER
DOI: 10.1074/jbc.M108972200

Keywords

-

Ask authors/readers for more resources

The 5'-untranslated leader region of human immunodeficiency virus type 1 (HIV-1) RNA contains multiple signals that control distinct steps of the viral replication cycle such as transcription, reverse transcription, genomic RNA dimerization, splicing, and packaging. It is likely that fine tuned coordinated regulation of these functions is achieved through specific RNA-protein and RNA-RNA interactions. In a search for cis-acting elements important for the tertiary structure of the 5'-untranslated region of HIV-1 genomic RNA, we identified, by ladder selection experiments, a short stretch of nucleotides directly downstream of the poly(A) signal that interacts with a nucleotide sequence located in the matrix region. Confirmation of the sequence of the interacting sites was obtained by partial or complete inhibition of this interaction by antisense oligonucleotides and by nucleotide substitutions. In the wild type RNA, this long range interaction was intramolecular, since no intermolecular RNA association was detected by gel electrophoresis with an RNA mutated in the dimerization initiation site and containing both sequences involved in the tertiary interaction. Moreover, the functional importance of this interaction is supported by its conservation in all HIV-1 isolates as well as in HIV-2 and simian immunodeficiency virus. Our results raise the possibility that this long range RNA-RNA interaction might be involved in the full-length genomic RNA selection during packaging, repression of the 5' polyadenylation signal, and/or splicing regulation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available