4.7 Article

Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 437, Issue 3, Pages 129-137

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0014-2999(02)01287-6

Keywords

M channel; linopirdine; XE 991; M current

Ask authors/readers for more resources

The novel anti-ischemic compound, BMS-204352 ((3S)-(+)-(5-chloro-2-methoxyphenyl)-1,3-dihydro-3-fluoro-6-(trifluoromethyl)-2H-indol-2-one)), strongly activates the voltage-gated K channel KCNQ5 in a concentration-dependent manner with an EC50 of 2.4 muM. At 10 muM, BMS-204352 increased the steady state current at -30 mV by 12-fold, in contrast to the 2-fold increase observed for the other KCNQ channels [Schrphider ct al., 2001]. Retigabine ((D-23129; N-(2-amino-4-(4-fluorobenzylamino)-phenyl) carbamic acid ethyl ester) induced a smaller, yet qualitatively similar effect on KCNQ5. Furthermore, BMS-204352 (10 muM) did not significantly shift the KCNQ5 activation curves (threshold and potential for half-activation, V-1/2), as observed for the other KCNQ channels. In the presence of BMS-204352, the activation and deactivation kinetics of the KCNQ5 currents were slowed as the slow activation time constant increased up to 10-fold. The Mcurrent blockers, linopirdine (DuP 996; 3,3 -bis (4-pyridinylmethyl)-l-phenylindolin-2 -one) and XE991 (10,10-bis(4-pyridinylmethyl)9(10H)-anthracenone), inhibited the activation of the KCNQ5 channel induced by the BMS-204352. Thus, BMS-204352 appears to be an efficacious KCNQ channels activator, and the pharmacological proper-ties of the compound on the KCNQ5 channel seems to be different from what has been obtained on the other KCNQ channels. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available