4.7 Article

The reverse transcriptase of the R2 non-LTR retrotransposon: Continuous synthesis of cDNA on non-continuous RNA templates

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 316, Issue 3, Pages 459-473

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1006/jmbi.2001.5369

Keywords

reverse transcriptase; retrotransposons; retroviruses; template switch; priming

Funding

  1. NIGMS NIH HHS [GM42790] Funding Source: Medline

Ask authors/readers for more resources

R2 is a non-long terminal repeat (non-LTR) retrotransposon that inserts into the 28 S rRNA genes of arthropods. The element encodes two enzymatic activities: an endonuclease that specifically cleaves the 28 S gene target site, and a reverse transcriptase (RT) that can use the 3' end of the cleaved DNA to prime reverse transcription. R2 RT only utilizes RNA templates that contain the 3' untranslated region of the R2 element as templates in this target primed reverse transcription (TPRT) reaction. Here, detailed biochemical characterization of the R2 RT indicates that the enzyme is capable of making multiple, consecutive jumps between RNA templates. The terminal 3' nucleotide of the acceptor RNA and the 5' nucleotide of the donor RNA are frequently reverse transcribed in these jumps, indicating that the acceptor RNA does not anneal to the cDNA derived from the donor RNA template. These template jumps occur during TPRT as well as in non-specific extension reactions in which reverse transcription is primed by an oligonucleotide annealed to the RNA template. Analysis of these RT assays done in the absence of the target DNA also revealed that the R2 RT can initiate reverse transcription near the 3' end of any RNA molecule using the 3' end of a second RNA molecule as primer. Again there is no requirement for sequence complementarity between the RNA used as template and the RNA used as primer. These properties of the R2 RT differ substantially from those of retroviral RTs but have similarities to the RT of the Mauriceville retroplasmid of Neurospora crassa. We present a model which relates these unusual properties of the R2 RT to structural differences from retroviral RTs as well as correlates these properties to the likely retrotransposition mechanism of R2 and other non-LTR retrotransposons. (C) 2002 Elsevier Science Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available