4.7 Article

Long-wave instabilities of non-uniformly heated falling films

Journal

JOURNAL OF FLUID MECHANICS
Volume 453, Issue -, Pages 153-175

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112001006814

Keywords

-

Ask authors/readers for more resources

We consider the problem of a thin liquid layer falling down an inclined plate that is subjected to non-uniform heating. The plate temperature is assumed to be linearly distributed and both directions of the temperature gradient with respect to the flow are investigated. The film flow is not only influenced by gravity and mean surface tension, but in addition by the thermocapillary force acting along the free surface. The coupling of thermocapillary instability and surface-wave instabilities is studied for two-dimensional disturbances. Applying the long-wave theory, a nonlinear evolution equation is derived. When the plate temperature is decreasing in the downstream direction, linear stability analysis exhibits a film stabilization, compared to a uniformly heated film. In contrast, for increasing temperature along the plate, the film becomes less stable. Numerical solution of the evolution equation indicates the existence of permanent finite-amplitude waves of different kinds. The shape of the waves depends mainly on the mean flow and the mean surface tension, but their amplitudes and phase speeds are influenced by thermocapillarity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available