4.6 Article

Reproduction of temporal scaling by a rectangular pulses rainfall model

Journal

HYDROLOGICAL PROCESSES
Volume 16, Issue 3, Pages 611-630

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/hyp.307

Keywords

temporal rainfall; Neyman-Scott rectangular pulses model; scaling properties

Ask authors/readers for more resources

The presence of scaling statistical properties in temporal rainfall has been well established in many empirical investigations during the latest decade. These properties have more and more come to be regarded as a fundamental feature of the rainfall process. How to best use the scaling properties for applied modelling remains to be assessed, however, particularly in the case of continuous rainfall time-series. One therefore is forced to use conventional time-series modelling, e.g. based on point process theory, which does not explicitly take scaling into account. In light of this, there is a need to investigate the degree to which point-process models are able to unintentionally reproduce the empirical scaling properties. In the present study, four 25-year series of 20-min rainfall intensities observed in Arno River basin, Italy, were investigated. A Neyman-Scott rectangular pulses (NSRP) model was fitted to these series, so enabling the generation of synthetic time-series suitable for investigation. A multifractal scaling behaviour was found to characterize the raw data within a range of time-scales between approximately 20 min and 1 week. The main features of this behaviour were surprisingly well reproduced in the simulated data, although some differences were observed, particularly at small scales below the typical duration of a rain cell. This suggests the possibility of a combined use of the NSRP model and a scaling approach, in order to extend the NSRP range of applicability for simulation purposes, Copyright (C) 2002 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available