4.5 Article

Upregulation of basal TGFβ1 levels by EMF coincident with chondrogenesis -: implications for skeletal repair and tissue engineering

Journal

JOURNAL OF ORTHOPAEDIC RESEARCH
Volume 20, Issue 2, Pages 233-240

Publisher

WILEY
DOI: 10.1016/S0736-0266(01)00084-5

Keywords

-

Categories

Funding

  1. NIEHS NIH HHS [ES 074042] Funding Source: Medline

Ask authors/readers for more resources

Members of the TGFP/BMP gene family regulate cartilage and bone development. These genes are re-expressed in bone repair and are thought to mediate chondro- and osteoprogenitor cell differentiation. These observations have led to a therapeutic strategy of introducing these growth factors into experimental cartilage and bone defects. Therapeutic efficacy, however, has been limited by diffusion or inactivation of these growth factors from the desired site and by the inability to deliver sustained concentrations of growth factors. This study demonstrates an increase in basal TGFbeta mRNA and protein levels in association with chondrogenic differentiation in endochondral ossification. mRNA is increased by 158%; protein by 23%, and cells immunopositive for TGFbeta by 343% at maximal TGFbeta expression. Importantly, the pattern of TGFbeta expression is preserved throughout the developmental sequence. Our data suggest that the exposure to a specific electromagnetic field (EMF) enhances, but does not disorganize, chondrogenesis and endochondral calcification as well as the normal physiologic expression of TGFbeta. The ability to increase TGFbeta at a moderately low dose for sustained periods of time without disorganizing its physiology suggests the ability to establish temporal concentration gradients of growth factors for the purpose of stimulating skeletal repair. (C) 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available