4.8 Article

Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.052715799

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-02212] Funding Source: Medline

Ask authors/readers for more resources

Transglutaminase 2 (TG2) is a distinctive member of the family of Ca2+-dependent enzymes recognized mostly by their abilities to catalyze the posttranslational crosslinking of proteins. TG2 uniquely binds and hydrolyzes GTP; binding GTP inhibits its crosslinking activity but allows it to function in signal transduction (hence the G(h) designation). The core domain of TG2 (residues 139-471, rat) comprises the papain-like catalytic triad and the GTP-binding domain (residues 159-173) and contains almost all of the conserved tryptophans of the protein. Examining point mutations at Trp positions 180, 241,278 332, and 337 showed that, upon binding 2'-(or 3')-O-(N-methylanthraniloyl)GTP (mantGTP), the Phe-332 mutant was the weakest (35% less than wild type) in resonance energy transfer from the protein (lambda(exc, max) = 290 nm) to the mant fluorophore (lambda(em) = 444 nm) and had a reduced affinity for mantGTP. Trp-332, situated near the catalytic center and the nucleotide-binding area of TG2, may be part of the allosteric relay machinery that transmits negative effector signals from nucleotide binding to the active center of TG2. A most important observation was that, whereas no enzyme activity could be detected when Trp-241 was replaced with Ala or Gin, partial preservation of catalytic activity was seen with substitutions by Tyr > Phe > His. The results indicate that Trp-241 is essential for catalysis, possibly by stabilizing the transition states by H-bonding, quadrupole-ion, or van der Waals interactions. This contrasts with the evolutionarily related papain family of cysteine proteases, which uses Gln-19 (papain) for stabilizing the transition state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available