4.8 Article

A Ca2+ switch aligns the active site of calpain

Journal

CELL
Volume 108, Issue 5, Pages 649-660

Publisher

CELL PRESS
DOI: 10.1016/S0092-8674(02)00659-1

Keywords

-

Ask authors/readers for more resources

Ca2+ signaling by calpains leads to controlled proteolysis during processes ranging from cytoskeleton remodeling in mammals to sex determination in nematodes. Deregulated Ca2+ levels result in aberrant proteolysis by calpains, which contributes to tissue damage in heart and brain ischemias as well as neurodegeneration in Alzheimer's disease. Here we show that activation of the protease core of mu calpain requires cooperative binding of two Ca2+ atoms at two non-EF-hand sites revealed in the 2.1 Angstrom crystal structure. Conservation of the Ca2+ binding residues defines an ancestral general mechanism of activation for most calpain isoforms, including some that lack EF-hand domains. The protease region is not affected by the endogenous inhibitor, calpastatin, and may contribute to calpain-mediated pathologies when the core is released by autoproteolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available