4.2 Article Proceedings Paper

RAFT Polymer End-Group Modification and Chain Coupling/Conjugation Via Disulfide Bonds

Journal

AUSTRALIAN JOURNAL OF CHEMISTRY
Volume 62, Issue 8, Pages 830-847

Publisher

CSIRO PUBLISHING
DOI: 10.1071/CH09062

Keywords

-

Ask authors/readers for more resources

End-group modification of polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization was accomplished by the conversion of trithiocarbonate or dithioester end-groups into a pyridyl disulfide (PDS) functionality. Several different polymers, such as poly(methyl methacrylate), polystyrene, poly(oligoethylene glycol-acrylate), poly(hydroxypropylacrylamide), and poly(N-isopropylacrylamide) were prepared by RAFT polymerization, and subjected to aminolysis in the presence of 2,2'-dithiodipyridine to yield thiol-terminated polymers with yields in the range 65-90% dependent on the polymer structure. Furthermore, this PDS end-group was utilized to generate higher-order architectures, such as diblock copolymers with high yields and selectively. In addition, the PDS end-groups were used for the bioconjugation of different biomolecules, such as oligonucleotides, carbohydrates, and peptides. The successful modification of well-defined polymers was confirmed by a combination of UV-vis, NMR spectroscopy, and gel permeation chromatography.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available