4.8 Article

Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas

Journal

NEURON
Volume 33, Issue 6, Pages 905-919

Publisher

CELL PRESS
DOI: 10.1016/S0896-6273(02)00625-6

Keywords

-

Categories

Funding

  1. NIDA NIH HHS [DA07255] Funding Source: Medline
  2. NINDS NIH HHS [NS35090] Funding Source: Medline

Ask authors/readers for more resources

A single nicotine exposure increases dopamine levels in the mesolimbic reward system for hours, but nicotine concentrations experienced by smokers desensitize nAChRs on dopamine neurons in seconds to minutes. Here, we show that persistent modulation of both GABAergic and glutamatergic synaptic transmission by nicotine can contribute to the sustained increase in dopamine neuron excitability. Nicotine enhances GABAergic transmission transiently, which is followed by a persistent depression of these inhibitory inputs due to nAChR desensitization. Simultaneously, nicotine enhances glutamatergic transmission through nAChRs that desensitize less than those on GABA neurons. The net effect is a shift toward excitation of the dopamine reward system. These results suggest that spatial and temporal differences in nicotinic receptor activity on both excitatory and inhibitory neurons in reward areas coordinate to reinforce nicotine self-administration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available