4.5 Review

The MAGE proteins: Emerging roles in cell cycle progression, apoptosis, and neurogenetic disease

Journal

JOURNAL OF NEUROSCIENCE RESEARCH
Volume 67, Issue 6, Pages 705-712

Publisher

WILEY
DOI: 10.1002/jnr.10160

Keywords

Nrage; Dixin; Necdin; Prader-Willi syndrome; IAP; Dlx; Msx; p53; E2F; apoptosis

Categories

Ask authors/readers for more resources

Since the identification of the first MAGE gene in 1991, the MAGE family has expanded dramatically, and over 25 MAGE genes have now been identified in humans. The focus of studies on the MAGE proteins has been on their potential for cancer immunotherapy, as a result of the finding that peptides derived from MAGE gene products are bound by major histocompatibility complexes and presented on the cell surface of cancer cells. However, the normal physiological role of MAGE proteins has remained a mystery. Recent studies are beginning to provide insights into MAGE gene function. Necdin acts as a cell cycle regulatory protein and plays a key role in the pathogenesis of Prader-Willi syndrome, a neurogenetic disorder. MAGE-D1, identified as a binding partner for the p75 neurotrophin receptor, the apoptosis inhibitory protein XIAP, and Dlx/MSX homeodomain proteins, blocks cell cycle progression and enhances apoptosis. This review provides an overview of the human MAGE genes and proteins, summarizes recent findings on their cellular roles, and provides a baseline for future studies on this intriguing gene family. (C) 2002 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available