4.7 Article

Thermodynamics of binary black holes and neutron stars

Journal

PHYSICAL REVIEW D
Volume 65, Issue 6, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevD.65.064035

Keywords

-

Ask authors/readers for more resources

We consider compact binary systems, modeled in general relativity as vacuum or perfect-fluid spacetimes with a helical Killing vector k(alpha), heuristically, the generator of time translations in a corotating frame. Systems that are stationary in this sense are not asymptotically flat, but have asymptotic behavior corresponding to equal amounts of ingoing and outgoing radiation. For black-hole binaries, a rigidity theorem implies that the Killing vector lies along the horizon's generators, and from this one can deduce the zeroth law (constant surface gravity of the horizon). Remarkably, although the mass and angular momentum of such a system are not defined, there is an exact first law, relating the change in the asymptotic Noether charge to the changes in the vorticity, baryon mass, and entropy of the fluid, and in the area of black holes. Binary systems with MOmega small have an approximate asymptopia in which one can write the first law in terms of the asymptotic mass and angular momentum. Asymptotic flatness is precise in two classes of solutions used to model binary systems: spacetimes satisfying the post-Newtonian equations, and solutions to a modified set of field equations that have a spatially conformally flat metric. (The spatial conformal flatness formalism with helical symmetry, however, is consistent with maximal slicing only if one replaces the extrinsic curvature in the field equations by an artificially tracefree expression in terms of the shift vector.) For these spacetimes, nearby equilibria whose stars have the same vorticity obey the relation deltaM = OmegadeltaJ, from which one can obtain a turning point criterion that governs the stability of orbits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available