4.6 Article

Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets

Journal

PHYSICA D-NONLINEAR PHENOMENA
Volume 163, Issue 3-4, Pages 236-251

Publisher

ELSEVIER
DOI: 10.1016/S0167-2789(01)00386-4

Keywords

non-linear systems; interdependent systems; electroencephalogram; magnetoencephalogram; epilepsy; Alzheimer

Ask authors/readers for more resources

The study of complex systems consisting of many interacting subsystems requires the use of analytical tools which can detect statistical dependencies between time series recorded from these subsystems. Typical examples are the electroencephalogram (EEG) and magnetoencephalogram (MEG) which may involve the simultaneous recording of 150 or more time series. Coherency, which is often used to study such data, is only sensitive to linear and symmetric interdependencies and cannot deal with non-stationarity. Recently, several algorithms based upon the concept of generalized synchronization have been introduced to overcome some of the limitations of coherency estimates (e.g. [Physica D 134 (1999) 419; Brain Res. 792 (1998) 24]). However, these methods are biased by the degrees of freedom of the interacting subsystems [Physica D 134 (1999) 419; Physica D 148 (2001) 147]. We propose a novel measure for generalized synchronization in multivariate data sets which avoids this bias and can deal with non-stationary dynamics. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available