4.7 Article

Activity of thalamic reticular neurons during spontaneous genetically determined spike and wave discharges

Journal

JOURNAL OF NEUROSCIENCE
Volume 22, Issue 6, Pages 2323-2334

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.22-06-02323.2002

Keywords

cortex; thalamus; burst firing; GAERS; absence epilepsy; lateral inhibition

Categories

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

This study reports the first intracellular recordings obtained during spontaneous, genetically determined spike and wave discharges (SWDs) in nucleus reticularis thalami (NRT) neurons from the genetic absence epilepsy rats from Strasbourg (GAERS), a model that closely reproduces the typical features of childhood absence seizures. A SWD started with a large hyperpolarization, which was independent of the preceding firing, and decreased in amplitude but did not reverse in polarity up to potentials greater than or equal to -90 mV. This hyperpolarization and the slowly decaying depolarization that terminated a SWD were unaffected by recording with KCl-filled electrodes. The prolonged (up to 15 action potentials), high-frequency bursts present during SWDs were tightly synchronized between adjacent neurons, correlated with the EEG spike component, and generated by a low-threshold Ca2+ potential, which, in turn, was brought about by the summation of high-frequency, small-amplitude depolarizing potentials. Fast hyperpolarizing IPSPs were not detected either during or in the absence of SWDs. Recordings with KCl-filled electrodes, however, showed a more depolarized resting membrane potential and a higher background firing, whereas the SWD-associated bursts had a longer latency to the EEG spike and a lower intraburst frequency. This novel finding demonstrates that spontaneous genetically determined SWDs occur in the presence of intra-NRT lateral inhibition. The unmasking of these properties in the GAERS NRT confirms their unique association with spontaneous genetically determined SWDs and thus their likely involvement in the pathophysiological processes of the human condition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available