4.7 Article

α-glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis

Journal

JOURNAL OF CELL BIOLOGY
Volume 156, Issue 6, Pages 1003-1013

Publisher

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.200111093

Keywords

cellulose; cell elongation; glycosylation; Arabidopsis; embryo

Categories

Ask authors/readers for more resources

Novel mutations in the RSW1 and KNOPF genes were identified in a large-scale screen for mutations that affect cell expansion in early Arabidopsis embryos. Embryos from both types of mutants were radially swollen with greatly reduced levels of crystalline cellulose, the principal structural component of the cell wall. Because RSW1 was previously shown to encode a catalytic subunit of cellulose synthase, the similar morphology of knf and rsw1-2 embryos suggests that the radially swollen phenotype of knf mutants is largely due to their cellulose deficiency. Map-based cloning of the KNF gene and enzyme assays of knf embryos demonstrated that KNF encodes alpha-glucosidase I, the enzyme that catalyzes the first step In N-linked glycan processing. The strongly reduced cellulose content of knf mutants indicates that Winked glycans are required for cellulose biosynthesis. Because cellulose synthase catalytic subunits do not appear to be N glycosylated, the N-glycan requirement apparently resides in other component(s) of the cellulose synthase machinery. Remarkably, cellular processes other than extracellular matrix biosynthesis and the formation of protein storage vacuoles appear unaffected in knf embryos. Thus in Arabidopsis cells, like yeast, N-glycan trimming is apparently required for the function of only a small subset of N-glycoproteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available