4.8 Article

Deletion of the thyroid hormone receptor α1 prevents the structural alterations of the cerebellum induced by hypothyroidism

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.062413299

Keywords

-

Funding

  1. NIDDK NIH HHS [R56 DK052798, DK-52798, R01 DK052798] Funding Source: Medline

Ask authors/readers for more resources

Thyroid hormone (T3) controls critical aspects of cerebellar development, such as migration of postmitotic granule cells and terminal differentiation of Purkinje cells. T3 acts through nuclear receptors (TR) of two types, TRalpha1 and TRbeta, that either repress or activate gene expression. We have analyzed the cerebellar structure of developing mice lacking the TRalpha1 isoform, which normally accounts for about 80% of T3 receptors in the cerebellum. Contrary to what was expected, granule cell migration and Purkinje cell differentiation were normal in the mutant mice. Even more striking was the fact that when neonatal hypothyroidism was induced, no alterations in cerebellar structure were observed in the mutant mice, whereas the wild-type mice showed delayed granule cell migration and arrested Purkinje cell growth. The results support the idea that repression by the TRalpha1 aporeceptor, and not the lack of thyroid hormone, is responsible for the hypothyroid phenotype. This conclusion was supported by experiments with the TRbeta-selective compound GC-1. Treatment of hypothyroid animals with T3, which binds to TRalpha1 and TRbeta, prevents any defect in cerebellar structure. In contrast, treatment with GC-1, which binds to TRbeta but not TRalpha1, partially corrects Purkinje cell differentiation but has no effect on granule cell migration. Our data indicate that thyroid hormone has a permissive effect on cerebellar granule cell migration through derepression by the TRalpha1 isoform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available