4.6 Article

Receptor-dependent metabolism of platelet-activating factor in murine macrophages

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 12, Pages 9722-9727

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M112406200

Keywords

-

Ask authors/readers for more resources

Degradation of platelet-activating factor (PAF) was examined by incubating PAF with macrophages from PAF receptor-deficient mice. The degradation rate was halved as compared with wild-type mice. The reduction of the rate was comparable with the presence of a PAF antagonist WEB 2086 in wild-type cells. PAF was internalized rapidly (t(1/2) approximate to 1 min) into wild-type macrophages. The PAF internalization was inhibited by the treatment of 0.45 m sucrose but was not affected by phorbol 12-myristate 13-acetate, suggesting that PAF internalizes into macrophages with its receptor in a clathrin-dependent manner. Internalized PAF was degraded into lyso-PAF with a half-life of 20 min. Treatment of concanavalin A inhibited the conversion of PAF into lyso-PAF, suggesting that uptake of PAF enhances PAF degradation. Lyso-PAF was subsequently metabolized into 1-alkyl-2-acyl-phosphatidylcholine. In addition, release of PAF acetylhydrolase from macrophages was enhanced when wild-type macrophages were stimulated with PAF but not from macrophages of PAF receptor-deficient mice. Thus, the PAF stimulation of macrophages leads to its degradation through both intracellular and extracellular mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available