4.5 Article

O-Glycosylation of human sex hormone-binding globulin is essential for inhibition of estradiol-induced MCF-7 breast cancer cell proliferation

Journal

MOLECULAR AND CELLULAR ENDOCRINOLOGY
Volume 189, Issue 1-2, Pages 135-143

Publisher

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S0303-7207(01)00725-0

Keywords

SHBG; glycosylation; antiproliferative action; breast cancer

Ask authors/readers for more resources

Human sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein. and each SHBG monomer may have an O-linked oligosaccharide at Thr(7) and up to two N-linked oligosaccharides at Asn(351) and Asn(367). In addition. a common genetic variant of SHBG exists with an extra site for N-glycosylation at residue 327. In the present study. we isolated MCF-7 derived cell lines expressing human SHBG cDNAs encoding the wild type protein or various glycosylation mutants. Estradiol (1 nM) treatment of parental (untransfected) MCF-7 cells or MCF-7 cells transfected with control expression vectors resulted in an increase in proliferation which was fully abrogated by co-incubation with an equimolar amount of human SHBG. In contrast, the same amount of purified SHBG added to MCF-7 cells expressing wild type SHBG partially inhibited the estradiol-induced cell proliferation. A high affinity binding site for SHBG was detectable on untransfected and control cells. but not on MCF-7 cells expressing wild type SHBG. Moreover, the treatment of MCF-7 cells with the conditioned medium containing wild type SHBG caused the disappearance of the SHBG plasma membrane-binding site. Media containing SHBG N-glycosylation mutants exerted the same effect. but mutants lacking the O-linked oligosaccharide at Thr(7) failed to do so. Estradiol-induced proliferation of parental MCF-7 cells was also inhibited by treatment with conditioned medium containing wild type SHBG or SHBG mutants lacking N-linked oligosaccharides, or containing an additional N-linked oligosaccharide at residue 327. However. MCF-7 conditioned medium containing SHBG mutants lacking an O-linked oligosaccharide at Thr(7) failed to exert this effect. These data suggest that O-glycosylation of SHBG is essential for SHBG binding to a membrane receptor that is responsible for inhibiting the estradiol-induced proliferation of MCF-7 breast cancer cells. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available