4.8 Article

Sliding mode neural network inference fuzzy logic control for active suspension systems

Journal

IEEE TRANSACTIONS ON FUZZY SYSTEMS
Volume 10, Issue 2, Pages 234-246

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/91.995124

Keywords

active suspension systems; fuzzy logic; neural network; sliding mode

Ask authors/readers for more resources

In the automotive industry, suspension systems are designed to provide desirable vehicle ride and handling properties. This paper presents the development of a robust intelligent nonlinear controller for active suspension systems based on a comprehensive and realistic nonlinear model. The inherent complex nonlinear system model's structure, and the presence of parameter uncertainties, have increased the difficulties of applying conventional linear and nonlinear control techniques. Recently, the combination of sliding mode, fuzzy logic, and neural network methodologies has emerged as a promising technique for dealing with complex uncertain systems. In this paper, a sliding mode neural network inference fuzzy logic controller is designed for automotive suspension systems in order to enhance the ride and comfort. Extensive simulations are performed on a quarter-car model, and the results show that the proposed controller outperforms existing conventional controllers with regard to body acceleration, suspension deflection, and tire deflection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available