4.0 Article

Perfusion improves tissue architecture of engineered cardiac muscle

Journal

TISSUE ENGINEERING
Volume 8, Issue 2, Pages 175-188

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/107632702753724950

Keywords

-

Ask authors/readers for more resources

Cardiac muscle with a certain threshold thickness, uniformity of tissue architecture, and functionality would expand the therapeutic options currently available to patients with congenital or acquired cardiac defects. Cardiac constructs cultured in well-mixed medium had an approximately 100-mum-thick peripheral tissue-like region around a relatively cell-free interior, a structure consistent with the presence of concentration gradients within the tissue. We hypothesized that direct perfusion of cultured constructs can reduce diffusional distances for mass transport, improve control of oxygen, pH, nutrients and metabolites in the cell microenvironment, and thereby increase the thickness and spatial uniformity of engineered cardiac muscle. To test this hypothesis, constructs (9.5-mm-diameter, 2-mm-thick discs) based on neonatal rat cardiac myocytes and fibrous polyglycolic acid scaffolds were cultured either directly perfused with medium or in control spinner flasks. Perfusion improved the spatial uniformity of cell distribution and enhanced the expression of cardiac-specific markers, presumably due to the improved control of local microenvironmental conditions within the forming tissue. Medium perfusion could thus be utilized to better mimic the transport conditions within native cardiac muscle and enable in vitro engineering of cardiac constructs with clinically useful thicknesses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available