4.4 Article

S-adenosylhomocysteine, but not homocysteine, is toxic to yeast lacking cystathionine β-synthase

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 75, Issue 4, Pages 335-343

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/S1096-7192(02)00003-3

Keywords

-

Funding

  1. NCI NIH HHS [CA06927] Funding Source: Medline
  2. NHLBI NIH HHS [HL57299] Funding Source: Medline

Ask authors/readers for more resources

Elevated plasma homocysteine is associated with a variety of diseases in humans including coronary heart disease, stroke, peripheral vascular disease, and birth defects. However, the mechanism by which plasma homocysteine affects cells is unknown. We have examined the growth of isogenic wild-type and cystathionine beta-synthase (CBS) deficient yeast in response to homocysteine and its immediate metabolic precursor, S-adenosylhomocysteine (SAH). CBS deficient yeast export significantly more homocysteine into the media than wild-type yeast and have elevated internal pools of homocysteine and SAH. We found that 5 mM homocysteine added to the media had very little effect on the growth of wild-type or CBS deficient yeast, although intracellular homocysteine concentrations increased five- to tenfold. In contrast, as little as 25 muM S-adenosylhomocysteine inhibited the growth of CBS deficient yeast, but had no effect on wild-type yeast. Measurements of the intracellular S-adenosylmethionine (SAM) and SAH indicate that CBS deficient yeast contain reduced SAM/SAH ratios relative to wild-type, and this ratio is further reduced by adding SAH to the media. Growth inhibition by SAH in CBS deficient yeast can be totally reversed by addition of SAM to the media, indicating that the ratio and not absolute level is critical for cell growth. These results suggest that CBS plays a key role in the regulation of the SAM/SAH ratio inside cells and that excessive perturbations of this ratio can inhibit growth. We hypothesize that elevated extracellular homocysteine present in humans may reflect an altered intracellular SAM/SAH ratio and that this may be related to disease pathogenesis. (C) 2002 Elsevier Science (USA). All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available