4.5 Article

Improving flexibility and efficiency by adding parallelism to genetic algorithms

Journal

STATISTICS AND COMPUTING
Volume 12, Issue 2, Pages 91-114

Publisher

SPRINGER
DOI: 10.1023/A:1014803900897

Keywords

parallel genetic algorithms; distributed GAs; cellular GAs; PGAs theory; PGA parameters influence; speedup; efficiency; scalability

Ask authors/readers for more resources

In this paper we develop a study on several types of parallel genetic algorithms (PGAs). Our motivation is to bring some uniformity to the proposal, comparison, and knowledge exchange among the traditionally opposite kinds of serial and parallel GAs. We comparatively analyze the properties of steady-state, generational, and cellular genetic algorithms. Afterwards, this study is extended to consider a distributed model consisting in a ring of GA islands. The analyzed features are the time complexity, selection pressure, schema processing rates, efficacy in finding an optimum, efficiency, speedup, and resistance to scalability. Besides that, we briefly discuss how the migration policy affects the search. Also, some of the search properties of cellular GAs are investigated. The selected benchmark is a representative subset of problems containing real world difficulties. We often conclude that parallel GAs are numerically better and faster than equivalent sequential GAs. Our aim is to shed some light on the advantages and drawbacks of various sequential and parallel GAs to help researchers using them in the very diverse application fields of the evolutionary computation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available