4.5 Article Proceedings Paper

Radial glial cells as neuronal precursors:: A new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice

Journal

BRAIN RESEARCH BULLETIN
Volume 57, Issue 6, Pages 777-788

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0361-9230(01)00777-8

Keywords

cell lineage; neurogenesis; asymmetric cell division; cell fate; mitosis

Categories

Ask authors/readers for more resources

Radial glia is a ubiquitous cell type in the developing central nervous system (CNS) of vertebrates, characterized by radial processes extending through the wall of the neural tube which serve as guiding cables for migrating neurons. Radial glial cells were considered as glial precursor cells due to their astroglial traits and later transformation into astrocytes in the mammalian CNS. Accordingly, a hypothetical morphologically distinct type of precursor was attributed the role of neurogenesis. Recent evidence obtained in vitro and in vivo, however, revealed that a large subset of radial glia generates neurons [42,53]. We further demonstrate here that the progeny of radial glial cells does not differ from the progeny of precursors labeled from the ventricular surface, implying that there is no obvious relation between precursor morphology and neuron-glia lineage decisions in the developing cerebral cortex of mice. Moreover, we show that many radial glial cells seem to maintain their process during cell division and discuss the implications of this observation for the orientation of cell division. These new data are then related to radial glial cells in other non-mammalian vertebrates persisting into adulthood and suggest that radial glia are not only neurogenic during development, but also in adulthood. (C) 2002 Elsevier Science Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available