4.7 Article

Electrical conductivity of nonideal carbon and zinc plasmas: Experimental and theoretical results

Journal

PHYSICAL REVIEW E
Volume 65, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.65.046407

Keywords

-

Ask authors/readers for more resources

Electrical conductivities of nonideal carbon and zinc plasmas have been measured in this paper. The plasma is produced by vaporizing a wire placed in a glass capillary within some hundred nanoseconds. In the case of carbon, vaporization occurs with good reproducibility when utilizing a preheating system. The particle density is in the range of n=(1-10)x10(21) cm(-3). The plasma temperature, which is obtained by fitting a Planck function to the measured spectrum, is between 7-15 kK. Plasma radius and behavior of the plasma expansion were studied with a streak, a framing or an intensified charge coupled device camera. We compare the measured electrical conductivities with theoretical results, which were obtained solving quantum kinetic equations for the nonideal partially ionized plasmas. In this approach, the transport cross sections are calculated on the level of a T-matrix approximation using effective potentials. The plasma composition is determined from a system of coupled mass action laws with nonideality corrections.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available