4.5 Article Proceedings Paper

Combined atomistic and mesoscale simulation of grain growth in nanocrystalline thin films

Journal

COMPUTATIONAL MATERIALS SCIENCE
Volume 23, Issue 1-4, Pages 15-32

Publisher

ELSEVIER
DOI: 10.1016/S0927-0256(01)00218-X

Keywords

grain growth; grain rotation; grain-boundary migration; atomistic simulation; mesoscale simulation; multiscale simulation; nanocrystalline materials

Ask authors/readers for more resources

We have combined molecular-dynamics (MD) simulations with mesoscale simulations to elucidate the mechanism and kinetics of grain growth in nanocrystalline palladium with a columnar grain structure. The conventional picture of grain growth assumes that the process is governed by curvature-driven grain-boundary (GB) migration. Out, MD simulations demonstrate that, at least in a nanocrystalline material. grain growth can also be triggered by the coordinated rotations of neighboring grains so its to eliminate the common GB between them. Such rotation-coalescence events result in the formation of highly elongated. unstable grains which then grow via the GB migration mechanism. These insights can be incorporated into mesoscale simulations in which, instead of the atoms, the objects that evoke in space and time are discretized GBs. grain junctions and the grain orientations. with a time scale controlled by that associated with grain rotation and GB migration and with a length scale given by the grain size. These mesoscale simulations. with physical insight and input materials parameters obtained by MD simulation. enable the investigation of the topology and long-time grain-growth behavior in a physically more realistic manner than via mesoscale simulations alone. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available