4.7 Article Proceedings Paper

Application of MEMS force sensors for in situ mechanical characterization of nano-scale thin films in SEM and TEM

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 97-8, Issue -, Pages 239-245

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/S0924-4247(01)00861-5

Keywords

MEMS force sensor; thin film properties; tensile testing

Ask authors/readers for more resources

We present a novel tensile testing technique utilizing MEMS force sensors for in situ mechanical characterization of sub-micron scale freestanding thin films in SEM and TEM. Microfabrication techniques are used to cofabricate the thin film specimens with force sensors to produce the following unique features: (1) small setup size to fit in SEM and TEM for in situ experiments, (2) ability to measure tensile prestress in specimen, (3) alignment between specimen and applied loading axes with lithographic precision, (4) no extra gripping mechanism required, and (5) ability to measure creep strain in the material. The technique allows single or multilayers of materials that can be deposited/ grown on silicon substrate to be tested. We demonstrate the technique by testing a 100 nm thick, 8.8 pm wide and 275 pm long freestanding aluminum specimen (average grain size about 50 nm) in situ inside an environmental SEM chamber, and present another setup for similar experiment in TEM. Experimental results strongly suggest that at this size scale: (1) elastic modulus does not change, (2) size effects on yield strength are pronounced (63 times the bulk pure aluminum yield stress), and (3) permanent strain hardening effects are absent. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available