4.6 Article Proceedings Paper

BoomerAMG:: A parallel algebraic multigrid solver and preconditioner

Journal

APPLIED NUMERICAL MATHEMATICS
Volume 41, Issue 1, Pages 155-177

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/S0168-9274(01)00115-5

Keywords

algebraic multigrid; parallel computing

Ask authors/readers for more resources

Driven by the need to solve linear systems arising from problems posed on extremely large, unstructured grids, there has been a recent resurgence of interest in algebraic multigrid (AMG). AMG is attractive in that it holds out the possibility of multigrid-like performance on unstructured grids. The sheer size of many modem physics and simulation problems has led to the development of massively parallel computers, and has sparked much research into developing algorithms for them. Parallelizing AMG is a difficult task, however. While much of the AMG method parallelizes readily, the process of coarse-grid selection, in particular, is fundamentally, sequential in nature. We have previously introduced a parallel algorithm [A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones, in: Proceedings of the Fifth International Symposium on Solving Irregularly Structured Problems in Parallel, Springer, New York, 1998] for the selection of coarse-grid points, based on modifications of certain parallel independent set algorithms and the application of heuristics designed to insure the quality of the coarse grids, and shown results from a prototype serial version of the algorithm. In this paper we describe an implementation of a parallel ANIG code, using the algorithm of A.J. Cleary, R.D. Falgout, V.E. Henson, J.E. Jones [in: Proceedings of the Fifth International Symposium on Solving Irregularly Structured Problems in Parallel, Springer, New York, 1998] as well as other approaches to parallelizing the coarse-grid selection. We consider three basic coarsening schemes and certain modifications to the basic schemes, designed to address specific performance issues. We present numerical results for a broad range of problem sizes and descriptions, and draw conclusions regarding the efficacy of the method. Finally, we indicate the current directions of the research. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available