4.6 Article

Remote control of restricted sets of operations: Teleportation of angles

Journal

PHYSICAL REVIEW A
Volume 65, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.65.042316

Keywords

-

Ask authors/readers for more resources

We study the remote implementation of a unitary transformation on the state of a qubit. We show the existence of nontrivial protocols (i.e., using less resources than bidirectional state teleportation) that allow the perfect remote implementation of certain continuous sets of quantum operations. We prove that, up to a local change of basis, only two subsets exist that can be implemented remotely with a nontrivial protocol: Arbitrary rotations around a fixed direction n and a pi rotation about an arbitrary direction lying in a plane orthogonal to n. The former operations effectively constitute the teleportation of arbitrary angles. The overall classical information and distributed entanglement cost required for the remote implementation depends on whether it is known, a priori, in which of the two teleportable subsets the transformation belongs. If it is known, the optimal protocol consumes one e-bit of entanglement and one c-bit in each direction. If it is not known in which subset the transformation belongs, two e-bits of entanglement need to be consumed and the classical channel becomes asymmetric with two c-bits being conveyed from Alice to Bob but only one from Bob to Alice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available