4.5 Article

AMPA glutamate receptor-mediated calcium signaling is transiently enhanced during development of oligodendrocytes

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 81, Issue 2, Pages 390-402

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1471-4159.2002.00866.x

Keywords

receptor; calcium; electrophysiology; fura-2 microfluorometry; oligodendroglial lineage

Ask authors/readers for more resources

Cells of the oligodendroglial lineage express Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate-preferring glutamate receptors (AMPA-GluR) during development. Prolonged activation of their AMPA-GluR causes Ca2+ overload, resulting in excitotoxic death. Prior studies have shown that oligodendroglial progenitors and immature oligodendrocytes are susceptible to excitotoxicity, whereas mature oligodendrocytes are resistant. An unresolved issue has been why Ca2+-permeability of AMPA-GluR varies so markedly with oligodendroglial development, although the level of expression of edited GluR2, an AMPA-GluR subunit which blocks Ca2+ entry, is relatively constant. To address this question, we performed Ca2+ imaging, molecular and electrophysiological analyses using purified cultures of the rat oligodendroglial lineage. We demonstrate that transient up-regulation of expression of GluR3 and GluR4 subunits in oligodendroglial progenitors and immature oligodendrocytes results in the assembly by these cells, but not by oligodendroglial pre-progenitors or mature oligodendrocytes, of a population of AMPA-GluR which lack GluR2. This stage-specific up-regulation of edited GluR2-free, and hence Ca2+-permeable, AMPA-GluR explains the selective susceptibility to excitotoxicity of cells at these stages of oligodendroglial differentiation, and is likely to be important to these cells in the trans-synaptic Ca2+-signaling from glutamatergic neurons, which occurs in hippocampus in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available