4.7 Article Proceedings Paper

In vivo copper-mediated free radical production: an ESR spin-trapping study

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1386-1425(01)00713-2

Keywords

rats; spin trap; ESR; free radicals

Categories

Ask authors/readers for more resources

Copper has been suggested to facilitate oxidative tissue injury through a free radical-mediated pathway analogous to the Fenton reaction. By applying the electron spin resonance (ESR) spin-trapping technique, evidence for hydroxyl radical formation in vivo was obtained in rats treated simultaneously with copper and ascorbic acid or paraquat. A secondary radical spin-trapping technique was used in which the hydroxyl radical formed the methyl radical upon reaction with dimethylsulfoxide. The methyl radical was then detected by ESR spectroscopy as its adduct with the spin trap phenyl-N-t-butyl- nitrone (PBN). In contrast, lipid derived radical was detected in vivo in copper-challenged, vitamin E and selenium-deficient rats. These findings support the proposal that dietary selenium and vitamin E can protect against lipid peroxidation and copper toxicity. Since copper excreted into the bile from treated animals is expected to be maintained in the Cu(I) state (by ascorbic acid or glutathione), a chelating agent that would redox-stablilize it in the Cu(I) state was used to prevent ex vivo redox chemistry. Bile samples were collected directly into solutions of bathocuproinedisulfonic acid, a Cu(l)-stabilizing agent, and 2,2'-dipyridyl, a Fe(II)-stabilizing agent. If these precautions were not taken, radical adducts generated ex vivo could be mistaken for radical adducts produced in vivo and excreted into the bile. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available