3.8 Article

Activation of a covalent outer membrane phospholipase A dimer

Journal

EUROPEAN JOURNAL OF BIOCHEMISTRY
Volume 269, Issue 8, Pages 2178-2185

Publisher

BLACKWELL PUBLISHING LTD
DOI: 10.1046/j.1432-1033.2002.02873.x

Keywords

OMPLA; dimerization; calcium binding; activity regulation

Ask authors/readers for more resources

The activity of outer membrane phospholipase A (OMPLA) is regulated by reversible dimerization. However, native OMPLA reconstituted in phospholipid vesicles was found to be present as a dimer but nevertheless inactive. To investigate the importance of dimerization for control of OMPLA activity, a covalent OMPLA dieter was constructed and its properties were compared to native OMPLA both in a micellar detergent and after reconstitution in a phospholipid bilayer. Unlike native OMPLA, activity of the covalent OMPLA dieter was independent of type and concentration of detergent in micellar systems. In such systems, the covalent OMPLA dimer invariantly displayed high calcium affinity. In contrast, high calcium concentrations were required to activate a covalent OMPLA dimer when present in intact vesicles. Solubilization of the vesicles increased the affinity for calcium, suggesting that in an intact bilayer the dimer interface is not properly formed. This was supported by the observation that OMPLA variants having an impaired dimeric interface also lacked high affinity calcium binding. A covalent linkage was not able to restore high affinity calcium binding in these variants, demonstrating that a proper dieter interface is essential for optimal catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available