4.5 Article

Zerovalent Fe, Co and Ni nanoparticle toxicity evaluated on SKOV-3 and U87 cell lines

Journal

JOURNAL OF APPLIED TOXICOLOGY
Volume 36, Issue 3, Pages 385-393

Publisher

WILEY
DOI: 10.1002/jat.3220

Keywords

Nanoparticles; dissolution; cytotoxicity; gene expression; uptake

Categories

Funding

  1. CARIPLO grant [2013-1052]
  2. ECSIN grant

Ask authors/readers for more resources

We have considered nanoparticles (NPs) of Fe, Co and Ni, three transition metals sharing similar chemical properties. NP dissolution, conducted by radioactive tracermethod and inductively coupled plasmamass spectrometry, indicated that NiNPs and FeNPs released in the medium a much smaller amount of ions than that released by Co NPs. The two considered methodological approaches, however, gave comparable but not identical results. All NPs are readily internalized by the cells, but their quantity inside the cells is less than 5%. Cytotoxicity and gene expression experiments were performed on SKOV-3 and U87 cells. In both cell lines, CoNPs and NiNPs were definitely more toxic than FeNPs. Real-time polymerase chain reaction experiments aimed to evaluate modifications of the expression of genes involved in the cellular stress response (HSP70, MT2A), or susceptible tometal exposure (SDHB1 and MLL), or involved in specific cellular processes (caspase3, IQSEC1 and VMP1), gave different response patterns in the two cell lines. HSP70, for example, was highly upregulated by CoNPs and NiNPs, but only in SKOV-3 cell lines. Overall, this work underlines the difficulties in predicting NP toxicological properties based only on their chemical characteristics. We, consequently, think that, at this stage of our knowledge, biological effects induced by metal-based NPs should be examined on a case-by-case basis following studies on different in vitro models. Moreover, with the only exception of U87 exposed to Ni, our results suggest that metallic NPs have caused, on gene expression, similar effects to those caused by their corresponding ions. Copyright (C) 2015 The Authors. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available