4.7 Article

The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements

Journal

CEMENT AND CONCRETE RESEARCH
Volume 32, Issue 4, Pages 577-584

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0008-8846(01)00724-4

Keywords

acceleration; physical properties; alkali-activated cement; fly ash

Ask authors/readers for more resources

Alkali-activated fly ash-based cements are concrete binders that utilise fly ash as their major solid raw material. The solid particles are activated using concentrated silicate and hydroxide solution to produce high-strength products. Due to the highly alkaline nature of the solution, precipitation of the reactive species, both from the solids and from the solution, proceeds at a very fast rate. This renders short setting Times, which can be advantageous or disadvantageous depending on the practical situation. The present work examines the effects of inorganic salt addition towards the setting and rheological characteristics of the early pastes. Compressive strength, Fourier transform infrared spectroscopy (FTIR) and X-ray diffractograms were collected to examine the hardened products. It was found that calcium (Ca) and magnesium (Mg) salts shortened the setting time by providing heterogeneous nucleation centers in the initial paste solution. Potassium salts retarded setting only to the cements, which used less sodium silicate in the initial solution for activation. Managed ionic contamination can be used to increase the product early strength. However, its long term effects still need to be identified. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available