4.6 Article

Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry

Journal

JOURNAL OF APPLIED PHYSICS
Volume 91, Issue 7, Pages 4500-4505

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1456246

Keywords

-

Ask authors/readers for more resources

A far ultraviolet (UV) spectroscopic ellipsometer system working up to 9 eV has been developed, and applied to characterize high-K-dielectric materials. These materials have been gaining greater attention as possible substitutes for SiO2 as gate dielectrics in aggressively scaled silicon devices. The optical properties of four representative high-K bulk crystalline dielectrics, LaAlO3, Y2O3-stabilized HfO2 (Y2O3)(0.15)-(HfO2)(0.85), GdScO3, and SmScO3, were investigated with far UV spectroscopic ellipsometry and visible-near UV optical transmission measurements. Optical dielectric functions and optical band gap energies for these materials are obtained from these studies. The spectroscopic data have been interpreted in terms of a universal electronic structure energy scheme developed form ab initio quantum chemical calculations. The spectroscopic data and results provide information that is needed to select viable alternative dielectric candidate materials with adequate band gaps, and conduction and valence band offset energies for this application, and additionally to provide an optical metrology for gate dielectric films on silicon substrates. (C) 2002 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available