4.5 Article

Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates

Journal

PHARMACEUTICAL RESEARCH
Volume 19, Issue 4, Pages 396-402

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1023/A:1015170907274

Keywords

polymer-drug conjugates; HPMA copolymer; hyaluronan; receptor-mediated targeting; doxorubicin; cancer

Funding

  1. NCI NIH HHS [CA51578] Funding Source: Medline

Ask authors/readers for more resources

Purpose. Overexpression of hyaluronan (HA) receptors on cancer cells results in enhanced endocytotic uptake of the drug conjugate. An N-(2-hydroxypropyl)methacrylamide (HPMA)-HA polymeric drug delivery system was used for targeted delivery of doxorubicin to cancer cells. Methods. HA-doxorubicin (DOX) bioconjugates (HA-DOX), and HPMA copolymer-DOX conjugates containing HA as a side chain (HPMA-HA-DOX) were synthesized. The cytotoxicity of the polymer-drug conjugate was evaluated via in vitro cell culture. The internalization of the conjugate was visualized by fluorescence microscopy. Results. Cytotoxicity of HPMA-HA-DOX targeted bioconjugate was higher against human breast cancer (HBL-100), ovarian cancer (SKOV-3), and colon cancer (HCT-116) cells when compared to the non-targeted HPMA-DOX conjugate. Fluorescence confocal microscopy revealed that the targeted HPMA-HA-DOX conjugates were internalized more efficiently by cancer cells relative to the non-targeted HPMA-DOX conjugate. Both HPMA-DOX and HPMA-HA-DOX showed minimal cytotoxicity toward mouse fibroblast NIH 3T3 cells. The internalization of polymer conjugates was correlated with their cytotoxicity. Conclusions. Selective delivery of anti-cancer agents to cancer cells was achieved by biochemical targeting. The HA-modified HPMA copolymer showed improved toxicity due to receptor-mediated uptake of the macromolecular drug.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available