4.5 Article Proceedings Paper

Aging in fungi:: role of mitochondria in Podospora anserina

Journal

MECHANISMS OF AGEING AND DEVELOPMENT
Volume 123, Issue 7, Pages 755-764

Publisher

ELSEVIER SCI IRELAND LTD
DOI: 10.1016/S0047-6374(01)00421-3

Keywords

fungi; Podospora anserina; mitochondria; oxidative stress; remodeling; retrograde response

Ask authors/readers for more resources

In experimental gerontology, there is a long tradition in the use of both unicellular and filamentous species of fungi. In the last three decades, biochemical, genetic and molecular approaches have proved very fruitful in elucidating different aspects of ageing. It was shown that various genes and molecular pathways are involved in life span control. The oxygenic energy metabolism plays a central role. During mitochondrial energy transduction, reactive oxygen species (ROS) are generated as by-products. These molecules are able to damage all cellular compounds leading to cellular dysfunctions. Within certain limits, however, cells are able to cope with ROS-related problems. First, ROS scavengers can be induced which are effective in lowering the molecular burden of ROS on cellular functions. Second, if damage occurs, specific repair mechanisms and the general turnover of affected molecules can maintain cellular functions. Finally, if damage of essential components is too severe, cells may induce specific pathways to compensate for the corresponding impairments. A coordinated interaction between different cellular compartments is involved in these processes. In this review I shall concentrate on the ageing in the filamentous ascomycete Podospora anserina. It is clear that both environmental as well as genetic traits are involved in the control of life span and that mitochondrial-nuclear interactions play a paramount role. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available